Dr Simone Zarpelon Leao Senior Lecturer City Futures Research Centre/City Analytics UNSW Built Environment

Ĩ.

City Analytics for Sustainable Mobility

2 24 8 5

132

Australia's Global University

City Analytics Research Program

City Analytics

City Analytics Laboratory CAL

CityViz – Making urban big data visible

CityViz is a new data visualisation and analytics initiative by City Futures capitalising on our unique access to urban big data for Sydney. Over the next few months a range of data will be presented on this site that will start to build a comprehensive and integrated visual depiction of our changing city.

To start, we have assembled new data on Sydney's emerging housing market - affordability, strata development and our 'million dollar property' map.

In coming months we will be adding to and updating these data with new data on, for example, urban wellbeing, transport and bike use, health services and other newly available datasets. Watch this space!

City Movement Indicators

CityViz – Cycling in Sydney over a 24 hour period

Communicating and visualising cycling data

Bicycling Dashboards (Capital Cities)

1,164

CITY FUTURES RESEARCH CENTRE

14,313

• 1 • 500

2,122

1,000

Integrating cycling data to varied contextual information

RiderLog Tracks

Roads

a. GPS tracked cycling routes map

Conservation & Recreation Zones

Commercial Centres

b. Slope, parks and commercial centres

Cycling lanes separated from Traffic Roads

c.Cycling infrastructure

Table 2. Summary of multiple regression analysis – Dependent variable: Route_Distance				
Predictor Variable	В	SEB	β	Part-Correlation
Intercept	245.896	243.338		
Gender	298.284	74.855	.028	.027
Distance to commercial areas (DistComm)	1.040	.022	.343	.318
Distance to Parks and coastal areas (DistParks)	1.253	.018	.525	.470
% of the overall track with slope <= 2%	3551.991	200.030	.150	.121
% of the overall track with slope >2 and <= 5 $%$	-669.270	333.528	021	014
% of the overall track with slope > 10 $%$	12469.117	504.025	.258	.219
% of the overall track with mixed traffic lanes	5822.758	180.877	.227	.168
% of the overall track with no cycling	-1129.253	225.874	035	034
infrastructure				

	Multiple Linear Regression	Deep Learning
4-bin Accuracy	50.43%	75.61%

Note: * p < .05; B= unstandardized regression coefficient; SE_B= standard error of the coefficient; β =standardized coefficient

Modelling and simulation of cycling patterns (agent-based modelling)

Ruled-based simulations (current context)

(a) Initial condition of a simulation

Ruled-based simulation (scenario with disruption by long term road works – red lines)

(c) Result of Simulation B

(d) Result of Simulation C

30 minute city, Sydney CBD

Total trips to Sydney CBD AM peak = 244,999 trips 39% = % trips with duration <= 30 min

98% of trips with duration <= 30 min are single trips

E.

Click on the map features for additional information; zoom in/out for better visualisation.

SydneyCBD_centroid

٠

SydneyCBD_30min

Number of trips:

> 3,000 to 4,000

> 2 000 to 3 000

% Duration of trips to Destination, AM Peak typical weekday

Parramatta Light Rail options

• Big data is providing information about active and public transport at a resolution never available before.

Concluding thoughts

- Handling and integrating big data is not an ordinary task, and more development is needed.
- Big data can be used for understanding transport patterns and dynamics, and monitoring change at high spatial and temporal resolutions.
- Tools are needed to assist urban and transport planning to incorporate big data analytics into routine procedures.
- Digital planning tools need to be co-designed with end-users for full usability and impact on urban planning and management.
- Partnerships with academia, government and industry have been essential for our research development.

