

## **Market Assessment Of EE Building Materials**

A step towards Sustanaible Future



11<sup>th</sup> December 2018 New Delhi S Vikash Ranjan Program Manager (EERB)

17.12.2018





## Agenda

- Building Sector- Built up area & Electricity consumption
- Snapshot Building Material Market Assessment (AAC blocks)
  - Key performance Indicators
  - Forecasting future trends
  - Market size and supply chain
  - Cost Benefit Analysis
  - Gaps and actions
- Project Objectives
- Way forward



## **Building Sector-Built up area & Electricity consumption**

**Residential Electricity Consumption Vs Area** 



3



Snapshot – Building Material Market Assessment (AAC blocks)







## **Technical Specifications**

| Particulars             | Units             | AAC                                             | Bricks                     |
|-------------------------|-------------------|-------------------------------------------------|----------------------------|
| Size                    | mm                | 625X240/<br>600X200                             | 230 mm x 115<br>mm x 75 mm |
| Compressive<br>Strength | N/mm²             | 35-40 kg/cm <sup>2</sup><br>(as per<br>IS:2185) | 25-30 kg/cm <sup>2</sup>   |
| density                 | Kg/m <sup>3</sup> | 550 – 650                                       | 1950 kg / m <sup>3</sup>   |
| Fire<br>Resistance      | Hrs.              | 4 (For 200mm<br>thick wall)                     | Two hours                  |
| Thermal<br>Conductivity | W/m-k             | 0.13 - 0.18                                     | 0.81                       |

Advantages over traditional bricks:

- Thermal insulation
- Structural strength
- Density
- Fire resistance
- High sound reduction index
- Being light weight saves cost & energy in transportation and labour expenses





## Test standards & labs

The relevant Indian test standard for AAC blocks is **IS 2185**: **Part 3 1984** i.e. **"Concrete masonry units - Autoclaved cellular Aerated concrete blocks**" density upto 1000 kg/m<sup>3</sup> Major tests include :

- ✓ Block density
- ✓ Compressive strength
- ✓ Thermal conductivity
- ✓ Drying shrinkage

| S.No | Regions | Test Labs in each region |
|------|---------|--------------------------|
| 1    | North   | 34                       |
| 2    | East    | 4                        |
| 3    | Central | 2                        |
| 4    | West    | 19                       |
| 5    | South   | 11                       |

Stakeholder interaction suggested that, all the players in organized category have in house test facility.

It can be established every regions has sufficient number of labs with NABL accreditation to carry out the testing of AAC blocks.





Market structure

Stakeholder interaction suggested that large part of AAC i.e. 52% is still unorganized. Major players from organized sector includes:

| Company         | Plant Location                                    | Capacity<br>(cu.m) |            |         |
|-----------------|---------------------------------------------------|--------------------|------------|---------|
| Biltech         | Palgarh, Bhigwan, Palwar,<br>Sriperunbudur, Budge | 1 million          | Organi     | Un-     |
| BG Shirke       | Pune, Bangalore                                   | o.5million         | sed<br>48% | organis |
| Ultra Tech      | Mumbai                                            | o. 5million        | 4070       | 52%     |
| CK Birla, HIL   | Chennai, Surat                                    | 0.35 million       |            |         |
| Unorganized Sec | tor                                               | 2.5 million        |            |         |
| Total           |                                                   | 4.85 million       |            |         |

Present overall AAC market stands at 3.5 million cu.M against total capacity of 5 million cu. M (utilization rate of 70%). AAC blocks are still surplus in capacity and can cater to the demand for few more years without adding any extra facility or plant.



#### Market size and supply chain - AAC block



AAC supply chain is direct, involving few intermediaries. Channel for procurement is:

- Direct from the manufacturer
- Procurement through traders
- Stakeholder interaction
  suggested that, manufacturing
  facility/plant caters the
  demand within the radius of
  500 km.

Suitability of AAC to west and south:

- Better clay brick quality at cheaper rates in north and east
- Majority of plants and supply are concentrated in western and southern region



## **Cost Benefit Analysis**

| Particulars                          | Unit                                   | Details       |
|--------------------------------------|----------------------------------------|---------------|
| Area per floor                       | Sq.m                                   | 1,000         |
| Number of floor                      |                                        | 5             |
| Window to wall ratio                 | Uniformly distributed over all facades | 40%           |
| Roof Construction                    | W/sqm-K (Btu/Hr-sqft-°F)               | 0.408 (0.072) |
| Glass U-value                        | W/sqm-K (Btu/Hr-sqft-°F)               | 5.8 (3.3)     |
| Glass SHGC                           |                                        | 0.29          |
| Glass VLT                            | %                                      | 40            |
| Lighting Power Density (LPD)         | W/sqm                                  | 10            |
| Equipment power Dendity (EPD)        | W/sqm                                  | 20            |
| Schedule                             |                                        | 9 AM to 6 PM  |
| Cooling set point                    | °C                                     | 24            |
| Heating set point                    | °C                                     | 21            |
| HVAC System (COP)                    |                                        |               |
| Packaged air cooled                  | kW/kW                                  | 3             |
| Wall Area                            | Sqft                                   | 14,400        |
| Type of wall (Brick/ AAC)            |                                        |               |
| Cost of wall construction with Brick | Rs./Sqft                               | 42            |
| Cost of wall construction with AAC   | Rs./Sqft                               | 50            |
| Extra cost for AAC over brick        | Rs./Sq.ft                              | 8             |
| Total extra cost of AAC block        | Rs.                                    | 1, 15,200     |





## **Cost Benefit Analysis**

|                                                                                | Hyderabad | Delhi   | Mumbai  | Kolkata | Chennai | Bangalore |
|--------------------------------------------------------------------------------|-----------|---------|---------|---------|---------|-----------|
| BRICK ('000 k Wh)                                                              | 990.93    | 916.08  | 1001.70 | 1012.10 | 1050.00 | 847.56    |
| AAC ('000 kWh)                                                                 | 922.52    | 916.08  | 937.89  | 938.92  | 979.17  | 798.67    |
| Savings ('000 kWh)                                                             | 68.41     | 74.49   | 63.81   | 73.18   | 70.83   | 48.89     |
| Savings per sqft of external<br>wall area (kWh)                                | 4.75      | 5.17    | 4.43    | 5.08    | 4.92    | 3.40      |
| Annual energy cost savings<br>(Rs.)                                            | 342,050   | 372,450 | 319,050 | 365,900 | 354,150 | 244,450   |
| Extra cost for AAC block<br>construction over brick wall<br>construction (Rs.) | 115,200   | 115,200 | 115,200 | 115,200 | 115,200 | 115,200   |
| Payback (years)                                                                | 0.34      | 0.31    | 0.36    | 0.31    | 0.33    | 0.47      |



## **Conclusion - KPI**

|                          | KPI's                                | Value                                | Remarks                                                          |
|--------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------|
| Technical specification  | Thermal conductivity                 | K- 0.13- 0.18 W/m ∘k                 | Threshold value                                                  |
|                          | Compressive Strength                 | 35 - 40 kg/cm <sup>2</sup>           | Range as per IS 2185 : 1984                                      |
|                          | Test standards                       | IS 2185:1984                         | IS 2185: 1984 (Part 3 ) available                                |
|                          | Test lab                             | Almost 70 labs                       | Good regional spread of NABL accredited labs                     |
|                          | Market structure                     | 48% organized                        | 4 major players in organized market                              |
| Market                   | Production capacity                  | App. 5 Million cu. M                 | Both organized and unorganized players                           |
|                          | Market size in 2012 -<br>13          | 1.23 Million cu. M                   | Simple supply chain. West & South find major application of AAC. |
|                          | Market forecast till<br>2020 -21     | 1.75 Million cu. m as<br>per BAU     |                                                                  |
| Cost Benefit<br>Analysis | Performance with water cooled system | 5 – 10 months<br>depending upon city | Good energy savings and attractive payback                       |
|                          | Performance with air cooled system   | 4- 6 months depending upon city      | Good energy savings and attractive payback                       |



## Gaps and actions

| S.No | Gaps                                                                                                                                            | Next Actions                                                                                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1    | Majorly unorganized market thus, ensuring<br>minimum standards for good quality/efficient<br>AAC blocks in commercial segment is a<br>challenge | Need to develop a strategy to engage unorganized players                                              |
| 2    | Present production capacity seems sufficient to meet next 2-3 years of demand                                                                   | Need to create market and give<br>confidence to manufacturers to plan<br>for fresh capacity additions |
| 3    | Limited labs with NABL accreditation facilities for thermal conductivity test (most important test)                                             | Need to ramp up these facilities to cater to market demand                                            |
| 4    | Limited engagement of AAC block industry                                                                                                        | Need to create a forum for effective data collection mechanism and identify R& D opportunities        |





## **Project Objective**

| Study the readiness of the market for implementation of |
|---------------------------------------------------------|
| building energy codes (ECBC & ECBC-R)                   |

Identify stakeholders associated to these building materials and understand domestic production capacity

Develop key performance indicators for the assessment of energy efficient building materials

Develop a tool to make a model building by taking input of Building material from the directory

Gap assessment and recommend next actions to support market readiness for ECBC & ECBC-R



## Approach

Conduct study to promote market transformation towards energy efficient materials through development of building materials directory and a policy roadmap.

The entire activity is divided into following:



arbeit (GIZ) GmbH





## **National Mapping**

National mapping of major Building Materials and products;

Capture product performance data to demonstrate efficiency of materials;

Identify associated test methodologies used to define these efficiencies;

Detail available standards and testing infrastructure;

Identify phase out and transformation from conventional to energy efficient materials;

Comparison of performance data with local and international labeling / MEP requirements.





#### **Market Assessment**

Assess the size of the national market for all major Building Materials;

Assess impact of the building energy codes and green building certifications;

Develop a forecast for market growth of energy efficient materials in India;

Assessment of Monitoring, Verification, and Enforcement;

Identify the barriers that exist to increased market penetration of efficient building materials





#### **Techno-economic Analysis**





#### **Guidelines for Energy Efficient Material Procurement**

Develop procurement rules for integration in tender document of energy efficient new buildings and retrofits; mentioning following specifications:

- minimum energy performance targets or savings;
- Restrict the use of toxic or hazardous substances in building materials;
- Specify the use of sustainably sourced natural materials;

Develop procurement rules for integration in tender document of energy efficient new buildings and retrofits; mentioning following specifications:

- Include commissioning, measurement and verification for training users;
- Environmental impact of the material during its overall life (including manufacturing, construction, demolition, reuse/recycle, etc.)

Develop specifications of building materials for incorporation in Schedule of Rates (SOR) developed by CPWD and State PWD





Develop a database of at least 5,000 materials/products having cost details, energy performance parameters, thermo-physical parameters, embodied energy, environmental impact parameters;

Dedicated interface for manufacturers to upload material information in online database;

Intuitive web-based tool to visualize and compare building materials to assist in material selection;

Linkage of database with the existing building performance tool on ECO-NIWAS portal





### Process for establishing Standards & Labels







# Thank you

