

" Building EE Retrofit-Transcending the 15% gravity pull " Dr G C Datta Roy

The GRIHA Summit, 2017 (New Delhi)

Development Environergy Services Ltd.

2017

Contents

- Targeting & Goal setting-Shift of Paradigm
- Jumping the Orbit
- Getting there
- First few steps

Targeting & Goal setting-US Case study (Federal Facilities)

Category	Target	Baseline
		year
Reduction of Scope 1 & 2 GHG emission	40% by 2025	2008
Reduction of Scope 3 GHG emission	28.5% by	2008
	2020	
Reduction in energy intensity in facilities	25% by 2025	2015
Use of renewable energy	30% by 2025	
Reduction in potable water intensity	30% by 2025	2007
Reduction in fleet GHG emission/per mile	30% by 2025	2014
Spread of green buildings (Existing>5000	Min 15 % by	
Sq ft)	number or	
	area	

OMB 2016**

Reduced energy intensity by 47% since launch of FEMP in 1973*

*www.ecofys.com (Evaluation of the market transforming effects of FEMP

**www.energy.gov/FEMP-OMB score card on sustainability

Jumping the Orbit

ODESL

Over 40% savings in all cases

Getting there

ODESL

Methodology	Guiding Principle
rictiouology	duluing i mapic

Conventional energy audit	Mainly evaluation of efficiency of the existing operating system, used only for retrofit
Benchmarking	Comparing against the existing best-Gap analysis-Project design
MED (Minimum energy design)	Challenging the existing best and setting new targets based on fundamentals. Can be used for new design as well as retrofit

MED Backbone-Synthesis

What it could do-a small illustrative example

BEPI : Building Energy Power Index					
Energy Consumption	kWh/Sqr	%			
Area	Normal Bldg.	improvement			
Airconditioning	27	12	55		
Lighting	6	1.6	74		

What to benchmark

							OD	ESL	
SI	Parameters	A	В	С	D	E	F	G	Rs/Sq/Month Rs/Roomnight
1	Rs./Sq.M/ Month	65	213	175	134	157	87	157	1400
2	Kcal/Sq.M/ Month	14167	44345	41385	30615	34928	19082	29724	1200
3	Kwh/Sq.M/ Month	8	25	23	22	21	11	20	800
4	Rs./Room night	1172	652	367	431	364	990	502	
5	MnKcal/ /Room night	0.25	0.14	0.09	0.10	0.08	0.22	0.09	
6	Kwh/Room night	150	76	49	72	50	131	65	1 2 3 4 5 6 7

Anomaly between absolute energy spend vs. business energy spend Inadequate functional synthesis at design stage; can be partially rectified by retrofit & recommissioning

Challenges-getting quality information

A real time monitoring system installed at Tshingua University in Beijing covering 36 commercial buildings- found buildings with windows consume 35% less energy in aggregate & provide healthier working environment

Few steps forward

- Best of class technologies (EESL has shown what can be done)
- Benchmarking
- User friendly design of retrofits
- Real time monitoring

How about GRIHA developing a monitoring pilot