Use of Non conventional Energy sources effectively to produce Air-conditioning

HOW CAN WE MAKE IN INDIA

IF WE CAN'T BREATHE IN INDIA

Radiant Theory

- Uses both Radiation and Convection
- Radiation (50-60%)

• Stefan-Boltzmann Equation

- $q_r = 0.15 \times 10^{-8} \cdot [(t_p + 460)^4 (t_a + 460)^4]$
- Convection (40-50%)

• ASHRAE S&E 1996

• $q_c = 0.31 \cdot |t_p - t_a|^{0.31} \cdot (t_p - t_a)$

Radiant Paradigm

• Expensive

- High first cost
- Difficult or improper installation
- o Unavailable

Radiant Tubing in floor

Radiant Panel Construction

Types of radiant Cooling systems

- Thermally Activated Slab (TAS), aka TABS, BKT, or BATISO
- Without insulation underneath
- Heated/cooled floors and ceilings condition spaces above and below
- Bi-directional

- ii. Radiant Floor Cooling and Floor Heating (FCH)
- With insulation underneath to condition the space above
- Heated/cooled floor
- Uni-directional

iii. Radiant Ceiling Heating and Cooling (CHC)

Types

 Installed directly below structural ceilings, either as panels with embedded pipes, or as pipes attached to ceiling, then "plastered" over

iv. Radiant Wall Heating and Cooling (WHC)

- Small diameter pipes are attached to walls then "plastered" over
- Pipes may be run from the floor as the same circuit, same fluid (left)

Types

Pipes may be run as a separate circuit (right)

Actual Thermal and Moisture control

- Divide and rule
- Separate control for sensible and latent
- DOAS
- Higher CHW temp
- Lower energy cost
- Fan energy plus higher chilled water temperature

Cost Advantages

Long Term Savings

- Smaller, More Efficient Chillers
- Reduced Fan Energy
- Reduced Maintenance Cost
- Not paying for Over Ventilating

Other Cost Savings

- Piping is not insulated
- Reduced Sprinkler Piping
- Testing and Balancing Made Simpler

ADVANTAGES OF COMBINED RADIANT HEATING AND COOLING SYSTEMS

MULTIPLYING THE ADVANTAGES BY COMBINING THE SYSTEMS

SUMMARY

Six primary benefits of combined RH and RC systems:

- a) Adaptability
- b) Architectural freedom
- c) Thermal comfort
- d) Control
- e) Efficiency
- f) Safety

Block B – Radiant Cooling with DOAS, and closed circuit cooling tower.

We have selected radiant cooling system where the sensible load is taken care by underfloor radiant system and latent load by TFA. The chilled water temperature is raised to 18/23 Deg C instead of 7/12 Deg C. This reduces the power consumption substantially and also closed circuit reduces the running cost by lowering the fouling on the condenser side.

Radiant Tubing in floor

Closed circuit Cooling Tower

Process principle

Mixed flow is to use both condensing coil and PVC fill for heat transfer in an evaporative condenser. Water is pumped from evaporative condenser bottom sump and distributed over the fill. Air is induced through the fill, causing a small portion of the water to evaporate. This evaporation removes heat from the remaining water which will be cooled, and the "cooled water" cascading downward and "encapsulating" over the tubes of the coil. The high temperature gaseous refrigerant is circulated through the coil. Heat from the refrigerant is dissipated through the coil tubes. The remaining water falls to the sump at the bottom of the condenser where it is recirculated by the pump up through the upper water spray distribution system and back down over the fills and coils. The heat exchange on the coil surface is mainly sensible heat exchange which reduces evaporation load in the coil section and minimizes the potential for scaling and fouling.

DOAS – Separating Sensible and Latent load (Divide and Rule)

Block Energy Calculations

 \bigcirc

[[))			
• Tonnage		•	66 TR	
• Power consumption (Standard	d system)	:		
• Chillers Air Cooled		• •	95 kw	
• CHW pumps	•	10 kw		
• AHU's		• •	20 kw	
 Running Cost per yr 		:	20 L/yr	
• With 12 hrs per day, 250 days, Rs 8 per unit with load profile				
• Radiant Cooling with TFA and Closed circuit cooling towers				
 Radiant Cooling with TFA and 	d Closed c	ircuit cooli	ng towers	
• Radiant Cooling with TFA and	1 Closed c	ircuit cooli	ing towers : 66	6 TR
 Radiant Cooling with TFA and Power consumption (Radiant, 	l Closed ci	rcuit cooli	ing towers : 66	6 TR
 Radiant Cooling with TFA and Power consumption (Radiant, Chillers (with radiant & closed) 	l Closed ci /closed ciu . circuit)	rcuit cooli rcuit):	ng towers : 66 33 kw	6 TR
 Radiant Cooling with TFA and Power consumption (Radiant, Chillers (with radiant & closed CHW pumps 	l Closed ci /closed ci circuit) :	rcuit cooli rcuit): : 12 kw	ng towers : 66 33 kw	5 TR
 Radiant Cooling with TFA and Power consumption (Radiant, Chillers (with radiant & closed CHW pumps CDW pumps 	l Closed ci /closed ci circuit) :	rcuit cooli ccuit): : 12 kw 12 kw	ng towers : 66 33 kw	6 TR
 Radiant Cooling with TFA and Power consumption (Radiant, Chillers (with radiant & closed CHW pumps CDW pumps TFA 	l Closed cir /closed cir circuit) :	rcuit cooli ccuit): : 12 kw 12 kw :	ng towers : 66 33 kw 10 kw	6 TR
 Radiant Cooling with TFA and Power consumption (Radiant, Chillers (with radiant & closed CHW pumps CDW pumps TFA Running Cost per yr 	l Closed cir /closed cir circuit) :	rcuit cooli rcuit): : 12 kw 12 kw : :	ng towers : 66 33 kw 10 kw 10 L /yr	5 TR

Block B

- Tonnage
- Cost of standard system • With AHU / AC Chillers
- Running Cost per yr 20 L/yr • With 12 hrs per day, 250 days, Rs 8 per unit
- Cost of Radiant Cooling with DOAS and Closed circuit cooling towers 0.73 Cr
- Running Cost per yr 10 L /yr •
 - With 12 hrs per day, 250 days, Rs 8 per unit
- Payback period 2. 3yrs
- Savings in 20 yrs

- 66 TR
- 0.50 Cr

1.80 Cr

Energy Saving System Guide

- **1 Ground Source Heat Pump System**
- 2、Ground Water Source Heat Pump System
- 3、Surface Water Source Heat Pump System
- 4、Sea Water Source Heat Pump System
- 5、Sewage Water Source Heat Pump
- 6、Water Loop heat Pump System
- 7、 Hybrid System

GSHP

GSHP

Energy Piles

Shanghai International School

GSHP

Energy Piles

Energy Saving System Guide

1、

Ground Source Heat Pump System

2

Ground Water Source Heat Pump System

3,

Surface Water Source Heat Pump System

4,

Sea Water Source Heat Pump System

5,

Sewage Water Source Heat Pump

6,

Water Loop heat Pump System

7,

Hybrid System

Ground Water Heat Pump

- Water is pumped from well, city-water, lake or pond, and then discharge to another well/ lake/pond near by.

- Temperature range of the ground water (11°C - 23°C all year round)
- Low initial cost, low operating cost

Submersible Pump Motor

PVC pipe being inserted in bore with the use of machine.

Heat exchanger

Copmressor Units

Geo Units
Compressor units

Compressor Units

Energy Saving System Guide

1、

Ground Source Heat Pump System

2,

Ground Water Source Heat Pump System

3,

Surface Water Source Heat Pump System

4,

Sea Water Source Heat Pump System

5,

Sewage Water Source Heat Pump

6,

Water Loop heat Pump System

7,

Hybrid System

Surface Water Heat Pump

Surface Water Heat Pump

Energy Saving System Guide

1、

Ground Source Heat Pump System

2、

Ground Water Source Heat Pump System

3

Surface Water Source Heat Pump System

4、

Sea Water Source Heat Pump System

5,

Sewage Water Source Heat Pump

6,

Water Loop heat Pump System

7,

Hybrid System

Sea Water Source Heat Pump

No Boiler, No Cooling Tower

Sea Water Mech Room

Sea Water Mech Room

Sea Water Project - Olympic Sail Center

Energy Saving System Guide

1、

Ground Source Heat Pump System

2、

Ground Water Source Heat Pump System

3,

Surface Water Source Heat Pump System

4、

Sea Water Source Heat Pump System

5、

Sewage Water Source Heat Pump

6,

Water Loop heat Pump System

7,

Hybrid System

Raw Sewage Energy Recovery Filter Unit

GREEN ENERGY PRODUCTS

Sewage Energy Recovery Filter Unit

The Auto-Flush (Anti-Clog) Sewage Water Filter Unit is the core equipment of Sewage Source Heat Pump System. It is used to filter raw untreated sewage solids/debris allowing sewage water (without solids/debris) to go thru Sewage Source Heat Pump Units or Sewage Source Heat Exchangers for energy recovery and then to return to auto-flush the filtered solids/debris back to the sewage system. This would ensure a continuous operation without clogging while utilizing Raw Sewage Water as Heat Sink and Heat Source.

GREEN ENERGY PRODUCTS

Raw Sewage Energy Recovery Filter Unit

Beijing Railway Station using sewage Recovery

丰水	跨到站	77品	Starge and	水心	牛次	受到站	井 息	and the second	小 心
Train	TO	Departs	Gate	Status	Train	TO	Departs	Gate	Status
6237	SHENYANG	14:30	20	Stop Che	C2069	TianJin	15:45	18	Haiting
6143	SHhongqi ac	14.31		Stop Che	G147	SHhongq i ao	15:46	17	Waiting
G145	Silhongqiad	14:36	14	Check In	C2227	TianJin	15 50	19	Waiting
C2061	TianJin	14:40	19	Check In	621	SHhongq i ac	16:00		Waiting
G161	ANGING	14:41	10	Check In	C2071	TianJin	16:02	20	Waiting
G193	QingDao	14:46	16	Check In	637	HANGZHOUDO	N 16:05	12	Waiting
C2063	TianJin	14:4	18	Waiting	C2229	TianJin	16:08	22	Waiting
C2065	Tiandin	15:0	23	Waiting	G195	QingDao	16:10	9	Waiting
G17	Sithongai	io 15:0	0 12	Haiting	C2589	YUJIAPU	16:15	19	Waiting
6383	HaErBinX	ii 15:0	5 8	Waiting	G149	SHhongqia	0 16 2	i 10	Maiting
635	HANGZHOUE	DON 15:1	0 11	Waiting	C2073	TianJin	16 3	2 23	Waiting
C227	5 TianJi	n 15:1	2 22	Haiting	G151	Shhongqia	o 16:3	5 7	Waiting
	"I ANGSH	AN 15:1	5 10	Waiting	C2075	i Tiandin	16.4	1 21	Waiting
	ngCh	un 15:	20 15	Waiting	G197	QingDao	16:4	2 13	Haiting
	ugSha	nBe 15	31 8	Check In	639	HANGZHOUD	ON 16:4	7 8	Waiting
	ianJi	n 15:	32 21	Haiting	C2071	7 TianJir	16:4	8 18	Waiting
	ng Ch	eng 15:	36 7	Waiting	023	SHhongai	ao 17:0	0 16	Waiting

广告 车次 终到站 开点检票口 状态 Train To Departs Gate State 17:00 19 Waitin 6239 JILIN C2231 TianJin 17:09 22 Waiti 09005 TianJinXi 17:10 17 Waitin G153 SHhongqiao 17:15 11 Waitin G155 SHhongqiao 17:20 15 Waitir C2079 TianJin 17 23 Waitin G199 C2233 17:25 10 Waitin QingDao Waitin TianJin 17:31 23 G267 HeFeiNan 17:38 Waiti G157 SHhongqiao 17:43 Waitin 8 C2081 TianJin 17:45 19 Waiti G159 SHhongqiao 17:48 Waiti C2235 TianJin 17:52 18 Waitin G201 NanJingNan 18:05 11 Waitin C2613 TianJinXi 18:06 22 Waiting G8917 TangShan 18:10 10 Waiting C2083 TianJin 18:14 20 Waiting

us Train To Departs Gate Sta ng 0331 JiNanXi 18:18 7 Waiti ng C2591 YUJIAPU 18:22 21 Waiti	us
ng 0331 JiNanXi 18:18 7 Waiti ng C2591 YUJIAPU 18:22 21 Waiti	
vg C2591 YUJIAPU 18:22 21 Waiti	ng
	ng
ve C2237 TianJin 18:28 19 Waiti	ng
ng G203 NanJingNan 18:28 12 Waiti	ng
ng G269 HeFeiNan 18:35 9 Waiti	ng
g C2085 TianJin 18:40 22 Waiti	æ
🛿 🗧 🖬 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉	g
g C2087 TianJin 18:52 23 Waitin	æ
🛿 🛛 G271 HeFeiNan 18:55 8 Waitin	g
g G7 SHhongqiao 19:00 7 Waitir	g
g G1567 SHANGQIU 19:05 17 Waitin	g
e C2089 TianJin 19:06 20 Waitin	8
g G207 XuZhouDong 19:10 10 Waitin	2
g C2131 TianJin 19:14 18 Waitin	8
g C2239 TianJin 19:26 22 Waitin	2
geoog TianJinXi 19:26 15 Waitin	2
2 G4961 JiNan 19:31 14 Waitin	2

Energy Saving System Guide

1、

Ground Source Heat Pump System

2,

Ground Water Source Heat Pump System

3,

Surface Water Source Heat Pump System

4、

Sea Water Source Heat Pump System

5,

Sewage Water Source Heat Pump

6、

Water Loop heat Pump System

7,

Hybrid System

WSHP Principle

WSHP Principle

WSHP Principle

WATER-SOURCE HEAT PUMP HEAT RECOVERY CYCLE

Nanjing Int'l Center (I) 220,000 sq.m.

WSHP System Cooling Tower + Plate Heat Exchanger Gas Fired Boiler

Total Area: 450,000m² Phase I: 220,000m² Two 38 Storey & Podium

Energy Saving System Guide

1、

Ground Source Heat Pump System

2、

Ground Water Source Heat Pump System

3、

Surface Water Source Heat Pump System

4、

Sea Water Source Heat Pump System

5、

Sewage Water Source Heat Pump

6,

7.

Water Loop heat Pump System

Hybrid System

<u>Annexure- I</u>

Project and design description

Design Parameters

Out Side Temperature: 45 deg. C, 18% RH.Inside Temperature: 25 deg. C, less than 60% RH.

Closed Circuit Cooling Tower:

- a) Make: Rosemex Cooling Towers.
- b) Capacity: 3 nos x 125 TR.

Geothermal Energy Piles:

PARALLEL - VERTICAL

Project outline

The proposed project is an office building. The air conditioning system of this project is designed with Energy Piles and closed circuit cooling tower with Water Cooled VRF units.

Case in point

• Large Hospital In Delhi

- o Tonnage 4000 TR, Heating 600000 Kcal
- Energy Consumption
- o Summer (8 months)
 - \times Electricity 12 Crores for Cooling
 - × HSD 0.9 Crores for Hot Water
- o Winter (4 months)
 - × Electricity 2 Crores for Cooling
 - × HSD 0.8 Crores for Hot Water

Case in point – with 4 Pipe

• Large Hospital In Delhi

- Tonnage 3000 TR, 100% heat Recovery of 1000 TR, Geo Thermal for 650 TR, Sewage for 350 TR, Closed circuit for 3000 TR
- Energy Consumption
- Summer (8 months)
 - Electricity 10 Crores for Cooling (saving in Geo thermal 0.75 C, Sewage 0.4 C & CCCT 0.85 C)
 - × HSD 0.1 Crores for Steam
- Winter (4 months)
 - Electricity 1.6 Crores for Cooling (saving in Geo thermal 0.15 C, Sewage 0.08 C & CCCT 0.17 C)
 - × HSD 0.05 Crores for Steam
- Extra Cost for spent in Capital Cost over Chiller + Hot water Generator : Rs 3 Crores
- Yearly Savings : Rs. 3.95 Crores
- Payback : 9 months
- Savings in 25 years : Rs 96 Crores
ORC Technology

Clean Renewable Power Generation

170 °F to 600 °F Heat Source Input Range

Modular and Scalable to Larger Plants

ORC Technology: Standard cycle

Sensible heat is lost in condenser limiting maximum cycle efficiency.

ORC Installations: *Steel Mill (3000 KW)*

Projects Overseas

Projects Overseas

Opus Corporation

20,000,000

•Minneapolis 600,000 sqft

Projects Overseas

Columbia Seafirst Center

•76 stories, 1,500,000 sqft

Projects

Shangri-la Hotel Apt

Projects

Shangri-la Hotel Apt

Performance of HVAC Systems at ASHRAE HQ

BY L.E. SOUTHARD, P.E., MEMBER ASHRAE, XIAOBING LIU, PH.D., MEMBER ASHRAE; AND J.D. SPITLER, PH.D., P.E., FELLOW ASHRAE

Part One

When ASHRAE headquarters in Atlanta was renovated in 2008, one goal was to create a living lab that could be accessed by members to learn about commercial building performance and state-of-the-art sustainable technology. As a part of this living lab concept, the building uses three separate HVAC systems: a variable refrigerant flow (VRF) system for spaces on the first floor, a ground source heat pump (GSHP) system, primarily for spaces on the second floor, and a dedicated outdoor air system (DOAS), which supplies fresh air to both floors. "During the two-year study period, the GHP system used 29 percent less energy in the summer and 63 percent less energy in the winter/shoulder seasons than the VRF system while maintaining similar zone temperatures," Spitler said. "The underlying difference between the geothermal system and the air-source VRF system lays in the heat sink and source: ground vs. ambient air," Spitler continued. "Though the control strategy for the VRF system resulted in longer runtimes compared to the geothermal system, it is clear that ground-loop water supply temperatures were more favorable than ambient-air temperatures for heat-pump operation. This allows the geothermal equipment to operate at higher efficiencies."

"Final Report, Performance of the HVAC Systems at the ASHRAE Headquarters Building" is available at <u>https://www.geoexchange.org/library/download-</u> <u>info/performance-hvac-systems-ashrae-headquarters-building/</u>. Online Condenser Tube Cleaning Balls: Sponge-ball type tube cleaning system technology has been a widely-adopted best practice for optimizing condenser performance in the power generation industry for decades. Advances in tube cleaning system technology have resulted in more effective and reliable systems with enhanced scalability. Case studies from across the US demonstrate realized energy efficiency gains up to 15% or more in HVAC applications. Coupled with increasing energy costs and intensifying focus on energy conservation, sponge-ball type cleaning system represents a good opportunity for facility managers to save energy, reduce maintenance costs, and lengthen chiller life expectancy. Application: Cleaning system for Water Cooled Chiller. Savings: 15% Annual cost savings.

Davings: 1976 Annual Cost

Payback: One year.

Advantage: Heat transfer continuously occurs at maximum efficiency, Online heat exchanger cleaning requires no process shutdown, Chemical-free no chemical handling or disposal hassle, Fully automatic for effortless maintenance

 Adiabatic Kit for Air Cooled Chiller: The Adiabatic Kit for Air Cooled Chiller is equipped with an innovative evaporative system which allows considerable energy savings, exploiting the natural process of adiabatic cooling: the hot and dry air withdrawn from the environment passes through spray of fine mist. This can cool the ambient air by as much as 30°C from 43°C ! The cooling effect allows to reduce the condensing temperature obtaining a considerable reduction of the pressure ratio of the compressor, with many energetic benefits. By regulating the spray of a fine water mist onto the mesh we can adjust the adiabatic cooling properties of the Air cooled Chiller. Application: Energy saving kit for Air Cooled Chiller. Savings: 15-25% Annual cost savings. Payback: 4-6 months.

1. Aerco Tankless Boiler: AERCO was the first to introduce condensing, fully modulating boilers and continues to improve upon its advanced designs. From the smallest elementary school to the largest of Las Vegas' hotel casinos, AERCO provides the highest-quality products and system designs that deliver energy-saving, compact space heating with the greatest efficiency and performance.

Application: Hot water generator to eliminate tank losses.

Savings: 15-25% Annual cost savings.

Payback: less than one year.

Advantages: 96-99% efficiency – lower fuel bills, High turndown air/fuel valve– lowest cycling losses, Tankless design – lower standby losses, Scale resistant design – maintains performance.

1. Closed Circuit Cooling Tower: A closed circuit cooling tower involves no contact between the air and the fluid being cooled. It has two separate fluid circuits, one in which the fluid is recirculated on the outside of the second circuit, which is a bundle of tubes through which the hot water is flowing. The air drawn through this cascading water provides evaporative cooling similar to an open cooling tower, except that the cooled water never makes direct contact with the air.

Application: Cooling Tower.

Savings: 14% Annual cost savings. Longer life of water cooled chiller.

Payback: One year.

Advantages: Corrosion-free leak free service, Dry Cooling Capability, Keeps the condenser clean and contaminant free (increase the chiller life), Noise level < 66 dB, Water consumption less than 40-30%, Increase the chiller efficiency upto 14%, Quick installation, Single Piece Equipment and Low maintenance costs.

1. Fabric Duct: In open ceiling architecture, traditional metal duct systems discharge air through side mounted metal diffusers typically spaced 10-15 feet apart. The air is directed to specific zones resulting in less efficient mixing of air causing drafts and hot/cold spots. With a Textile System, the air is discharged more uniformly along the entire length providing consistent and uniform air dispersion.

Advantage: Simplified Design/Uniform Air Dispersion, Cost Savings/Minimal Labor Hours, Lightweight/Easy to Ship, Quiet, Air Porous (zero condensation), Hygienic, Easy to Maintain/Clean, Ease of Use.

FABRIC

Custom engineered air dispersion system

METAL SYSTEMS

Localized diffusers, duct, and dampers FreshAire UV light for Coil Cleaning & Air Purification: For over a century scientists have known that certain frequencies of light have a devastating effect on microbial life. We now know that exposure to ultraviolet light in the range of 254 NM (UV-C band) disrupts the DNA of micro-organisms thus preventing them from reproducing, thereby effectively killing them. Savings For Coil Cleaning: Save 10% on chiller consumption & 20% fan energy consumption. Payback: 4-5 months.

Advantage: Improve Indoor Air Quality, Reduce HVAC System Maintenance, Extend System Life, Help to Reduce Energy Costs.

 High Volume Low Speed (HVLS) Fans: HVLS fans produce a massive, cylindrical column of air that flows down to the floor and outward in all directions, consistently circulating air in large spaces. Balanced air circulation reduces stagnant air, hot and cold spots, and condensation, keeping food and produce dry and fresh and reducing spoilage. Available size for HVLS fan is from 8 ft to 24 ft. Single HVLS fan cover upto 2651 Sqmt area. Application: For Commercial and Industrial use.

Savings: For the same air flow it consumes 1/5 power consumption than ceiling fans. Payback: One year.

Advantage:

 Heat Pump Water Heaters: The heat pump's operation is based on absorbing and transferring a certain amount of thermal energy from a low-grade source (air or underground layers) to a heating element (pump's coolant) with a higher temperature . As long as an air source heat pump has a COP of higher than 1 then it should be cheaper than electricity and reduce carbon emissions. Compared with higher carbon fuels such as oil burners or coal fires heat pumps perform well, reducing costs and carbon. Application: For hot water generation.

Savings: A conventional boiler has an efficiency of 85%, whereas heat pump works on 300% efficiency.

Payback: Months not years.

1. 2 stage Air washer: In two stage cooling, the primary air stream is first pre-cooled sensibly by indirect evaporative cooling. Since this pre-cooling adds no humidity to the air, it can still be subsequently direct evaporatively cooled, which is carried out in a direct evaporative section with a rigid pad. However, since the pre-cooled air can hold less moisture, the final relative humidity is lower (about 60% to 65%) than that reached with direct evaporative cooling.

Thank you!

Jagdeep Singh Jagdeep.singh@rosemexecotech.com 9810134084