The GRIHA Summit 2015 March 12th, 13th & 14th at India Habitat Centre, New Delhi

<u>Session:- "Using Bamboo for Construction"</u> <u>13th March 2015</u>

Reinforced Bamboo Concrete Constructions

S. C. Mehrotra

Chairman Membership Committee – FIDIC (International Federation of Consulting Engineers

Immediate Past - President Indian Association of Structural Engineers Past President - Consulting Engineers Association of India

Chief Executive & Principal Structural Design Consultant

BAMBOO HAS HIGH STRENGTH TO WEIGHT RATIO AND EASE IN WORKING WITH SIMPLE TOOLS. IT HAS A LONG AND WELL ESTABLISHED TRADITION AS A BUILDING MATERIAL THROUGHOUT THE TROPICAL AND SUB-TROPICAL REGIONS.

IT IS USED IN MANY FORMS OF CONSTRUCTION,
SPECIALLY, FOR HOUSING IN RURAL AREAS.

HOWEVER, ENOUGH ATTENTION HAS NOT BEEN PAID TOWARDS RESEARCH AND DEVELOPMENT IN BAMBOO AS CONSTRUCTION MATERIAL FOR DIFFERENT USES.

LIGHTNESS MAKES BAMBOO SUITABLE FOR HOUSING IN DISASTER- PRONE AREAS LIKE PRONE TO EARTHQUAKE. IT HAS THE CAPACITY TO ABSORB MORE ENERGY AND SHOW LARGER DEFLECTIONS BEFORE COLLAPSE AND AS SUCH IS SAFER UNDER EARTH QUAKE TREMORS.

AT PRESENT, THE APPLICATION OF BAMBOO AS AN ENGINEERING MATERIAL IS LARGELY BASED ON PRACTICAL AND ENGINEERING EXPERIENCE SINCE THE DESIGN GUIDELINES ARE INADEQUATE.

IN A CIRCULAR CROSS- SECTION, BAMBOO IS GENERALLY HOLLOW AND FOR STRUCTURAL PURPOSES THIS FORM IS QUITE EFFECTIVE AND ADVANTAGEOUS. THE STRENGTH OF BAMBOO CULMS, THEIR STRAIGHTNESS, LIGHTNESS COMBINED WITH HARDNESS, RANGE AND SIZE OF HOLLOWNESS MAKE THEM POTENTIALLY SUITABLE FOR A VARIETY OF APPLICATIONS BOTH STRUCTURAL AND NON-STRUCTURAL.

WITH GOOD PHYSICAL AND MECHANICAL PROPERTIES, LOW SHRINKAGE AND GOOD AVERAGE DENSITY, BAMBOO IS WELL SUITED TO REPLACE BOTH STRUCTURAL STEEL AND REINFORCING STEEL.

SPECIES OF BAMBOO

MORE THAN 100 SPECIES OF BAMBOO ARE AVAILABLE IN INDIA AND A FEW OF THEM ARE SOLID BUT MOST OF THEM ARE HOLLOW IN STRUCTURE.

MOISTURE CONTENT IN BAMBOO

WITH DECREASE OF MOISTURE CONTENT (M) THE STRENGTH OF BAMBOO INCREASES EXPONENTIALLY AND BAMBOO HAS AN INTERECTION POINT (FIBRE SATURATION POINT) AT AROUND 25 PERCENT MOISTURE CONTENT DEPENDING UPON THE SPECIES.

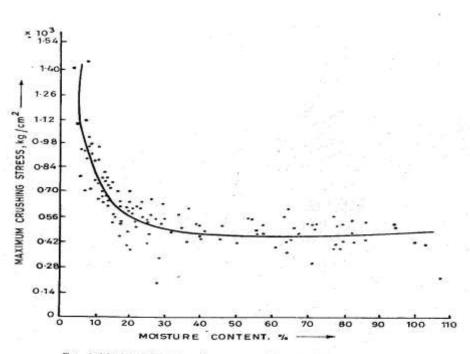


Fig. 1 Moisture Strength Rilationship Bambusa Nutans (Bambod)

AIR SEASONING OF SPLIT OR HALF-ROUND BAMBOO DOES NOT POSE MUCH PROBLEM BUT CARE HAS TO BE TAKEN TO PREVENT FUNGAL DISCOLOURATION AND DECAY. HOWEVER, RAPID DRYING IN OPEN SUN CAN CONTROL DECAY DUE TO FUNGAL AND INSECT ATTACK.

NOTE:-

A GENERAL OBSERVATION HAS BEEN THAT IMMATURE BAMBOO GETS INVARIABLY DEFORMED IN CROSS-SECTION DURING SEASONING AND THICK WALLED IMMATURE BAMBOO GENERALLY COLLAPSES.

Table 1 Physical and Mechanical Properties of Indian Bamboos (In Round Form)
(Chasses 4.1 and 5.1.2)

Si No.	Spoiler	Properties							
		In Oreen Condition				ls/Air Dry Conditions			
		Density Agres ²	Modulus of Engine Ment [®]	Modules of Blacksky 10 Nous	Mozimen Congressive Streeth Niveni	Denke Ager	Modelso of Rapture News/	Medeler of Electric 10" Noon!	
(1)	(3)	di :	(4)	(2)	153	(TI	- 00	P91	
0	Barban nariyalası	594	1.59	12.01	16.7	679	89.1	31.41	
40	M. delenow	763	454	7.31	46.7	-	-	-	
10	E hambor (Sim Stangalances)	559	56.5	5.95	35.3	960	80.1	8.96	
ini	E harmonice	578	59.7	11.01	28.8	972	10533	17.01	
+1	E. planterrene (Son. Emana)	1999	82.8	14.77	31.0	-	-	-	
90	E /aVV	500	32.0	6.62	45.6	000	324	98.72	
mit:	# publide	736	35.2	12.90	348	-	-	-	
ebái	E peliesopkii	619	28.5	3.82	32.1	689	35.5	4.40	
100	R relate	69	31.1	3.98	46.7	722	96.7	19.97	
4)	R westgray	626	194.1	3.38	36.1	-	446	-	
0.0	E regard	626	40.5	2.87	38.6	-	-	-	
60)	Capitalistanisme peopratric	606	92.6	19.36	363	640	21.3	19.22	
160	Dendroceismo ytjerenos	507	17.2	10.0	38.2	-	-	-	
GE1	D. hardoni	513	40.0	2.49	43.4	-	-		
210	D. Longity with at	711	73.4	5.21	45,1	084	473	6.86	
AVO	D. needinghoose	591	26.5	2.44	48.5	.064	37.8	0.77	
12hts	D proper	604	75.4	(2.98)	55.9	726	1193	1500	
mti)	Abdocume tecrifica	817	93.2	0.29	53.8	791	57.6	12.95	
90	Ozpowenkou algorielski	638	85.6	14.96	46.6	-		-	
11)	Thomasurin abore	739	01/9	9.70	44.7	798	90.0	12.15	
360	VIES:								
1.	As the strongers of agila hardoos is pro-	er than that of m	rad bandron, the ren	after of term on you	nd benino can be safely us	of for designing	with opt hardon.		
	The volume of stress in Sixual bases by								
3000		and the second second	100000000000000000000000000000000000000	COMPANDE COMPA					

Table 2 Safe Working Stresses of Bamboos for Structural Designing¹⁾
(Clauses 4.1.1, 4.2, 5.3 and 5.4)

SI No.	Species	Extreme Fibre Stress in Bending N/mm²	Modulus of Elasticity 10 ³ N/mm ²	Allowable Compressive Stress N/mm ² (5)	
(1)	(2)	(3)	(4)		
	GROUP A				
i)	Bambusa glancescens (syn. B. nana)	20.7	3.28	15.4	
ii)	Dendrocalamus strictus	18.4	2.66	10.3	
ni)	Oxytenanthera abyssinicia	20.9	3.31	1.5.3	
	GROUP B				
iv)	Bumbusa balcoop	16.4	1.62	13.3	
v)	R. pattida	13.8	2.87	15.4	
vi)	B. means	13.2	1.47	13.0	
vii)	B. neida	12.8	1.77	11.6	
viii)	B. auriculata	16.3	3.34	10.5	
ix)	B. burmanica	14.9	2.45	11.4	
X)	Cephalostachyum pergracile	13.2	2.48	10,5	
xi)	Melocanna baccifera (Syn. M. bambusaides)	13.3	2.53	15.4	
xji)	Thyrsolachys oliveri	15.5	2.16	13.4	
	GROUP C				
xiii)	Bambusa airandinacea (Syn. B. hambos)	14.6	1.32	10.1	
ziv)	B. ventricosa	8.5	0.75	10.3	
xv)	B. vulgaris	10.4	0.64	11.0	
xvi)	Dendrocalamus longispathus	8.3	1.22	12.0	

 $NOTE = The \ values \ of \ stress \ in \ N/mm^2 \ have \ been \ obtained \ by \ converting \ the \ values \ in \ kgf/cm^2 \ by \ dividing \ the \ same \ by \ 10.$

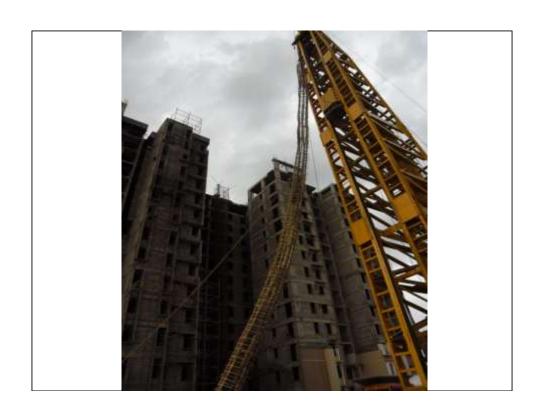
¹¹ The values given pertain to testing of bamboo in green condition.

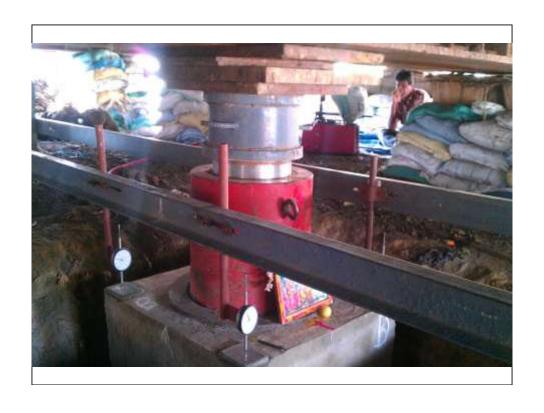
SO FAR BAMBOO HAS MAINLY BEEN USED FOR TRUSSES OR LIGHT WEIGHT SINGLE STOREY SLOPED ROOF HOUSES USING BAMBOO AS SUPPORTING COLUMNS AND ROOF BEAMS ETC. BUT RECENTLY IT HAS NOW BEING USED AS REINFORCING MATERIAL IN CONCRETE REPLACING STEEL REINFORCEMENTS

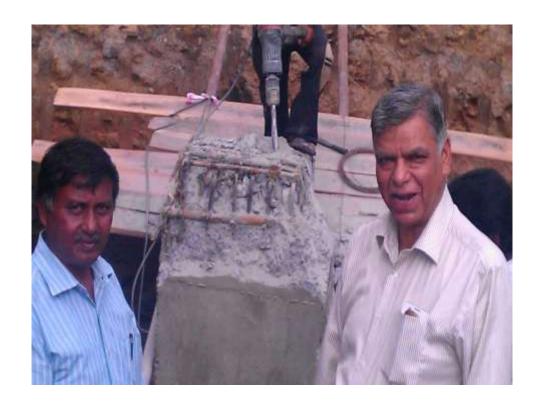
JAIN TEMPLE AT CHENNAI USING BAMBOO IN PLACE OF STEEL

16

IN THE PROJECT OF JAIN TEMPLE, THE USE OF REINFORCING STEEL WAS NOT ALLOWED FROM RELIGIOUS CONSIDERATIONS. SO BAMBOO WAS USED IN PILE, PILE CAP, COLUMNS & BEAMS.







THUS BAMBOO CAN BE EFFECTIVELY USED AS REPLACEMENT OF REINFORCING STEEL TO SAVE ENERGY. MORE WORK IS REQUIRED TO BE CARRIED OUT IN THIS FIELD.

63

THANK YOU

64